mmol) of zirconocene dichloride in 100 mL of tetrahydrofurane. After being stirred overnight the red solution was stripped. The resulting orange residue was extracted twice with 150 mL of pentane. The combined extracts were cooled to $-15^{\circ} \mathrm{C}$. The obtained first crystal fraction was very impure. Subsequent crystallization of the same solution at -15 ${ }^{\circ} \mathrm{C}$ resulted in small orange crystals of 24 . Concentration of the mother liquor to about 200 mL followed by crystallization at $-30^{\circ} \mathrm{C}$ yielded another orange crystal portion of $\mathbf{2 4}$. After the combined fractions of 24 were dried in vacuo, $2.9 \mathrm{~g}(43 \%)$ of product remained. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClZZ}$: C, $65.15 ; \mathrm{H}, 4.96$. Found: C, $65.79 ; \mathrm{H}, 5.28 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 6.7-7.2(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 5.62(\mathrm{~s}, 10 \mathrm{H}, \mathrm{Cp}), 3.35(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{C} H \mathrm{Ph}_{2}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 150.5$ (s, q-Ph), 128.6, 128.7 (d each, $158, o$ - and m-Ph), 123.5 (d, $162, p-\mathrm{Ph}$), 114.6 (d, $175, \mathrm{Cp}$), 80.1 (d, 116 , $C \mathrm{HPh}_{2}$). IR (KBr) $\nu\left(\mathrm{cm}^{-1}\right) 2810\left(\mathrm{CPh}_{2}-\mathrm{H}\right)$. MS m/e $422\left(\mathrm{M}^{+}\right)$.

Preparation of Benzhydrylzirconocene Methoxide (25). A solution of $0.65 \mathrm{~g}(3.9 \mathrm{mmol})$ of diphenylmethane in 50 mL of tetrahydrofurane was slowly treated at room temperature with $2.4 \mathrm{~mL}(3.9 \mathrm{mmol})$ of a 1.6 M solution of n-butyllithium in hexane. After the mixture was stirred for 1 h the resulting red solution was transferred slowly into a stirred solution of 1.05 g (3.65 mmol) of methoxyzirconocene chloride in 30 mL of tetrahydrofurane. After the mixture was stirred for an additional 2 h the orange solution was stripped. The resulting yellow residue was extracted with 100 mL of pentane. The pentane solution was filtered over a G4-frit and stripped. The resulting yellow oil consisted of a mixture of $\mathbf{2 5}$ and diphenylmethane. Because of similar solubilities no further purification took place upon attempted recrystallization. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 6.9-7.2$ ($\mathrm{m}, 10 \mathrm{H}, \mathrm{Ph}$), $5.56(\mathrm{~s}, 10 \mathrm{H}, \mathrm{Cp}), 3.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHPh}$), $3.65(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 152.0(\mathrm{~s}, \mathrm{q}-\mathrm{Ph}), 128.3(\mathrm{~d}, 155, m-\mathrm{Ph}), 128.2$ (d, 156, o-Ph), 122.6 (d, 158, p-Ph), 112.1 (d, 172, Cp), 67.6 (d, 118, CHPh_{2}), $61.8\left(\mathrm{q}, 140, \mathrm{OCH}_{3}\right)$.

Reaction of $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{Cl}^{2}\right) \mathrm{CPh}_{2} \mathbf{O C H}_{3}$ (8) with $\left[\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}\right]_{x}$ (3). $\left[\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}\right]_{x}(3)(15 \mathrm{mg}, 0.06 \mathrm{mmol})$ was placed in a $5-\mathrm{mm}$ NMR tube and suspended with a solution of $25 \mathrm{mg}(0.06 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{Zr}$ (Cl) $\mathrm{CPh}_{2} \mathrm{OCH}_{3}(8)$ in 0.5 mL of deuterated benzene. The NMR tube was sealed and heated at $55^{\circ} \mathrm{C}$ with constant agitation for 7 h . The progress of the reaction was controlled by ${ }^{1} \mathrm{H}$ NMR. The products were identified by comparison of their ${ }^{1} \mathrm{H}$ NMR signals with those of authentic
samples. A mixture of the products zirconocene dichloride (6) (20\%), methoxyzirconocene chloride (9) (30\%), benzhydrylzirconocene chloride (24) (30\%), and benzhydrylzirconocene methoxide (25) (20\%) was obtained after 7 h . ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 5.89$ (6), 5.92/3.65 (9), 6.9-7.2/ 5.62/3.35 (24), 6.9-7.2/5.56/3.80/3.65 (25).

Reaction of $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{Cl}) \mathrm{CPh}_{2} \mathrm{OCH}_{3}$ (8) with $\left(\mathrm{Cp}_{2} \mathrm{ZrH}_{2}\right)_{x}$ (4). $\left(\mathrm{Cp}_{2} \mathrm{ZrH}_{2}\right)_{x}(4)(15 \mathrm{mg}, 0.07 \mathrm{mmol})$ was placed in a $5-\mathrm{mm}$ NMR tube and suspended with a solution of $25 \mathrm{mg}(0.06 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{Cl})$ $\mathrm{CPh}_{2} \mathrm{OCH}_{3}(8)$ in 0.5 mL of deuterated benzene. The NMR tube was sealed and thermolyzed at $55^{\circ} \mathrm{C}$ with constant agitation for 2 h . The analysis was carried out as described above for the analogous reaction between 8 and 3. Eventually, a mixture of zirconocene dichloride (6) (5%), methoxyzirconocene chloride (9) (30%), benzhydrylzirconocene chloride (24) (30\%), and benzhydrylzirconocene methoxide (25) (30\%) was obtained besides several unidentified products (5%).

Reaction of $\mu-\left(\mathrm{CH}_{2}=\mathbf{O}\right)\left(\mathrm{Cp}_{2} \mathbf{Z r C l}\right)_{2}$ (1) with $\left[\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}\right]_{x}$ (3). $\left[\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}\right]_{x}(\mathbf{3})(15 \mathrm{mg}, 0.06 \mathrm{mmol})$ was placed in a $5-\mathrm{mm}$ NMR tube and suspended with a solution of $30 \mathrm{mg}(0.06 \mathrm{mmol})$ of 1 in 0.5 mL of deuterated benzene. The NMR tube was sealed and thermolyzed at $55^{\circ} \mathrm{C}$ for 14 h as described above. A clean mixture of μ - $\mathrm{O}-\left(\mathrm{Cp}_{2} \mathrm{ZrCl}\right)_{2}$ (29) (50%) and $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{Cl}) \mathrm{CH}_{3}$ (23) (50%) was obtained. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 6.02$ ($\mathrm{s}, 20 \mathrm{H}, \mathrm{Cp}, 29$), 5.76 ($\mathrm{s}, 10 \mathrm{H}, \mathrm{Cp}, 23$), 0.42 ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{CH}_{3}, 23$).

Acknowledgment. This work was supported by the Fonds der Chemischen Industrie (grant to G.E.) and by a NATO Research Grant (No. 0425/83; J.L.A. and G.E.). J.L.A. is indepted to the National Science Foundation for support of this work

Registry No. 1, 83385-36-8; 3, 86953-31-3; 4, 85442-81-5; 8, 100909-17-9; 9, 11087-26-6; 23, 1291-45-8; 24, 85959-82-6; 25, 100909-18-0; 29, 12097-04-0; diphenylmethane, 101-81-5; zirconocene dichloride, 1291-32-3

Supplementary Material Available: Tables of bond distances, angles, and observed and calculated structure factors (12 pages). Ordering information is given on any current masthead page.

Kinetic and Thermodynamic Acidity of Hydrido Transition-Metal Complexes. 3. Thermodynamic Acidity of Common Mononuclear Carbonyl Hydrides

Eric J. Moore, Jeffrey M. Sullivan, and Jack R. Norton*
Contribution from the Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523. Received October 4, 1985

Abstract

The $\mathrm{p} K_{\mathrm{a}}$ values of the common mononuclear carbonyl hydrides have been determined in acetonitrile by $\mathbf{I R}$ measurement of the position of deprotonation equilibria with various nitrogen bases and potassium phenolate. The resulting values cover a range of about $20 \mathrm{p} K_{\mathrm{a}}$ units, from 8.3 for $\mathrm{HCo}(\mathrm{CO})_{4}$ to 26.6 for $\mathrm{CpW}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right) \mathrm{H}$. Hydrides with $\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$ ligands are appreciably weaker acids than the corresponding hydrides with $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$ ligands (e.g., the $\mathrm{p} K_{\mathrm{a}}$ of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me} 5\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{H}$ is 26.3 , while that of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{H}$ is 19.4). The acidities of the group 8 carbonyl hydrides $\mathrm{H}_{2} \mathrm{M}(\mathrm{CO})_{4}$ decrease in the order $\mathrm{Fe}>\mathrm{Ru}>\mathrm{Os}$.

Despite the 1971 comment ${ }^{1}$ that "there is a definite need for the measurement of the acidity functions of a systematic series of metal hydrides under controlled, identical conditions", few such measurements have been made until recently. Early German workers carefully determined the $\mathrm{p} K_{\mathrm{a}}$ of a few carbonyl hydrides in $\mathrm{H}_{2} \mathrm{O},{ }^{2}$ but the scope of this approach is limited by the low solubility of transition-metal hydrides in that solvent (and

[^0]sometimes by their reactivity with it). Using polarographic and IR techniques, Vlcek and co-workers ${ }^{3}$ attempted the qualitative determination of the relative thermodynamic acidities in THF of several common carbonyl hydrides and published a preliminary report; however, all measurements in THF are complicated by the tendency of carbonylmetallate anions to form ion pairs in that solvent. ${ }^{4}$ More recently, Walker, Ford, and Pearson ${ }^{5}$ determined
(3) Miholova, D.; Vlcek, A. Proc. Conf. Coord. Chem., 3rd 1971, 221. We thank $\mathrm{D}_{\mathrm{r}} . \mathrm{J}$. A. Labinger for bringing this reference to our attention.
(4) (a) Darensbourg, M. Y.; Darensbourg, D. J.; Barros, H. L. C. Inorg. Chem. 1978, 17, 297. (b) Darensbourg, M. Y.; Jimenez, P;; Sackett, J. R.; Hanckel, J. M.; Kump, R. L. J. Am. Chem. Soc. 1982, 104, 1521. (c) Darensbourg, M. Y.; Hanckel, J. M. Organometallics 1982, 1, 82. (d) Darensbourg, M. Y.; Hanckel, J. M. J. Organomet. Chem. 1981, 217, C9. (e) Darensbourg, M. Y.; Barros, H.; Borman, C. J. J. Am. Chem. Soc. 1977, 99 1647. (f) Darensbourg, M. Y.; Barros, H. L. C. Inorg. Chem. 1979, 18, 3786.
the equilibrium extent of deprotonation of several carbonyl hydrides by methoxide ion in methanol; although good results were obtained with polynuclear hydrides, for mononuclear hydrides (e.g., $\mathrm{H}_{2} \mathrm{Os}(\mathrm{CO})_{4}$) the deprotonation equilibrium was complicated by ion pairing equilibria involving the carbonylmetallate anions, methoxide ion, and alkali metal cations.

We believe that acetonitrile is the ideal solvent for the systematic study of metal hydride acidities, and we have already employed it to study the thermodynamic and kinetic acidities of certain osmium hydrides and of the group 6 hydrides. ${ }^{6}$ Acetonitrile solvates cations very effectively, ${ }^{7}$ and for that and other reasons it is much less conducive to the formation of ion pairs than is THF or MeOH. ${ }^{4}$ (We have never, with any carbonylmetallate anion, seen any IR evidence for contact ion pair formation in $\mathrm{CH}_{3} \mathrm{CN}$.) Furthermore, transition-metal hydrides are generally much more soluble in acetonitrile than in water. Good acidity data for organic acids ${ }^{7,8, \mathrm{~b}}$ and protonated amines ${ }^{7,8 \mathrm{c}}$ are available in $\mathrm{CH}_{3} \mathrm{CN}$. Finally, unlike relatively basic solvents such as $\mathrm{H}_{2} \mathrm{O}$ which exert a leveling effect on strong acids, acetonitrile as a solvent is a sufficiently weak base to differentiate among the acid strengths of strong proton donors $\left(\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HNO}_{3}\right.$, and HCl are all weak acids in $\mathrm{CH}_{3} \mathrm{CN}^{9}$).

We now report the measurement of the $\mathrm{p} K_{\mathrm{a}}$ values in $\mathrm{CH}_{3} \mathrm{CN}$ of the remaining common mononuclear carbonyl hydrides, including $\mathrm{HCo}(\mathrm{CO})_{4}$ and its derivatives.

Experimental Section

General. All manipulations were performed in an inert atmosphere $\left(\mathrm{N}_{2}\right)$ with high vacuum line, Schlenk, or inert atmosphere box techniques. Hexane and toluene were distilled from Na - or $\mathrm{K} /$ benzophenone, followed by vacuum transfer from "titanocene". ${ }^{10}$ THF, tetraglyme (under vacuum), glyme, and diglyme were distilled from Na - or $\mathrm{K} /$ benzophenone.

For early experiments involving the less acidic hydrides, acetonitrile was, as in our previous work. ${ }^{6}$ purified by distillation under N_{2} from $\mathrm{P}_{4} \mathrm{O}_{10}$ onto CaH_{2}, then distillation from CaH_{2}, and finally vacuum transfer; for the more acidic (e.g., cobalt) hydrides, where deprotonation by basic impurities was sometimes observed, more elaborate purification procedures-discussed in a separate section below-were employed. The $\mathrm{CD}_{3} \mathrm{CN}$ used as an NMR solvent was always purified by vacuum transfer from $\mathrm{P}_{4} \mathrm{O}_{10}$.

Aniline, p-(trifluoromethyl)aniline, morpholine, triethylamine, pyrrolidine, and tetramethylguanidine (TMG) were predried over, and then fractionally distilled from, barium oxide. 2,4-Dichloroaniline, p-cyanoaniline, p-toluidine, and p-anisidine were recrystallized from ethanol and dried in vacuo for 6 h at $40^{\circ} \mathrm{C}$. Trifluoroacetic acid was distilled from a small a mount of $\mathrm{P}_{4} \mathrm{O}_{10}$ prior to use. $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ was sublimed at $25^{\circ} \mathrm{C}$ under vacuum prior to use.

Infrared spectra were recorded on a Perkin-Elmer PE983 spectrometer using CaF_{2} solution cells. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on either an IBM WP-200-SY or an IBM WP-270-SY spectrometer; ${ }^{31} \mathrm{P}$ NMR spectra were recorded on the WP-200 instrument.

Materials. The following compounds were prepared by literature methods: $\mathrm{NaCo}(\mathrm{CO})_{3} \mathrm{PPh}_{3} \cdot 2 \mathrm{THF}^{11} \mathrm{NaCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3} \cdot 2 \mathrm{THF},{ }^{, 11}$ $[\mathrm{PPN}]\left[\mathrm{HFe}(\mathrm{CO})_{4}\right]{ }^{43} \mathrm{Cp}{ }^{4 \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{~K},{ }^{12} \mathrm{CpW}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right) \mathrm{H},{ }^{13} \mathrm{NaM}-~}$ (CO) $5_{5}{ }^{14} \mathrm{HM}(\mathrm{CO})_{5}{ }^{15}(\mathrm{M}=\mathrm{Mn}, \mathrm{Re}), \mathrm{C}_{2} \mathrm{Ru}_{2}(\mathrm{CO})_{4}{ }^{16} \mathrm{Cp}^{*} \mathrm{Mo}(\mathrm{CO})_{3} \mathrm{H}$
(5) (a) Walker, H. W.; Kresge, C. T.; Pearson, R. G.; Ford, P. C. J. Am. Chem. Soc. 1979, 101,7428 . (b) Pearson, R. G.; Ford, P. C. Comments Inorg. Chem. 1982, 1, 279. (c) Walker, H. W.; Pearson, R. G.; Ford, P. C. J. Am. Chem. Soc. 1983, 105, 1179. (d) Pearson, R. G. Chem. Rev. 1985, 85, 41.
(6) (a) Jordan, R. F.; Norton, J. R. J. Am. Chem. Soc. 1982, 104, 1255. Part 1 of a series of which the present paper is a member. (b) Jordan, R. F.; Norton, J. R. ACS Symp. Ser. 1982, 198, 403. Part 2 of series of which the present paper is a member.
(7) (a) Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 45.
(8) (a) Kolthoff, I. M.; Chantooni, M. K. J. Am. Chem. Soc. 1970, 92, 7025. (b) Kolthoff, I. M.; Chantooni, M. K.; Bhowmik, S. J. Am. Chem. Soc. 1966, 88, 5430. (c) Coetzee, J. R.; Padmanabhan, G. R. J. Am. Chem. Soc. 1965, 87, 5005 .
(9) Kolthoff, I. M.; Bruckenstein, S.; Chantooni, M. K. J. Am. Chem. Soc. 1961, 83, 3927.
(10) Marvick, R. H.; Brintzinger, H. H. J. Am. Chem. Soc. 1971, 93 , 2046.
(11) Hieber, W.; Lindner, E. Chem. Ber. 1961, 94, 1417.
(12) Wright, M. E.; Nelson, G. O. J. Organomet. Chem. 1984, 263, 371 (13) Kalck, P.; Pince, R.; Poilbanc, R.; Rousell, J. J. Organomet. Chem. 1970, 24, 445 .
$\left(\mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right){ }^{17} \mathrm{~K}\left[\mathrm{M}(\mathrm{CO})_{2} \mathrm{Cp}\right](\mathrm{M}=\mathrm{Fe}, \mathrm{Ru}){ }^{18}$ and $\mathrm{Na}_{2}-$ $\mathrm{Ru}(\mathrm{CO})_{4}{ }^{19} \quad\left[\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{Co}(\mathbf{C O})_{4}\right]_{2}$: Several reports indicated that strongly coordinating solvents promoted the disproportionation of $\mathrm{CO}_{2}-$ $(\mathrm{CO})_{8}$ to $\mathrm{Co}(\mathrm{B})_{6}{ }^{2+}$ and $\mathrm{Co}(\mathrm{CO})_{4}{ }^{-20}$ Dissolving $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ in $\mathrm{CH}_{3} \mathrm{CN}$ resulted in a rapid evolution of gas (CO) and a color change from redbrown to pink-orange $\left[\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]^{2+}$. The salt decomposed upon removal of solvent and so was prepared and used in situ.

Evaluation of Solvent Purification Techniques. $\mathrm{HCO}(\mathrm{CO})_{4}$ was generated by the method described in the next section in acetonitrile purified by each of several procedures, ${ }^{21}$ and the extent of deprotonation by basic impurities was measured by IR spectroscopy; the same IR cell (path length, 0.06 mm , see below) was used for all measurements in each set of experiments. In the first set of experiments, Fischer reagent grade $\mathrm{CH}_{3} \mathrm{CN}$ was purified by the following methods: (a) successive distillation from alkaline KMnO_{4} and KHSO_{4}, fractional distillation from CaH_{2}, and vacuum transfer from $\mathrm{P}_{4} \mathrm{O}_{10}$; (b) distillation from CuSO_{4} followed by vacuum transfer from $\mathrm{P}_{4} \mathrm{O}_{10}$; and (c) distillation from CuSO_{4} followed by distillation from CaH_{2}. The resulting acetonitrile was degassed by several freeze-pump-thaw cycles and stored under vacuum. Solutions 31 mM in $\mathrm{HCo}(\mathrm{CO})_{4}$ showed 17% deprotonation in $\mathrm{CH}_{3} \mathrm{CN}$ purified by method a, 24% deprotonation in $\mathrm{CH}_{3} \mathrm{CN}$ purified by method b , and 17% deprotonation in $\mathrm{CH}_{3} \mathrm{CN}$ purified by method c. Subsequent experiments with cobalt hydrides were therefore carried out with acetonitrile purified by procedure a.

In the second set of experiments, the $\mathrm{CH}_{3} \mathrm{CN}$ used was (d) Fischer reagent grade $\mathrm{CH}_{3} \mathrm{CN}$ distilled from CaH_{2}; (e) Fischer $\mathrm{CH}_{3} \mathrm{CN}$ distilled from CuSO_{4}, then fractionally distilled from CaH_{2}; (f) Fischer $\mathrm{CH}_{3} \mathrm{CN}$ distilled from alkaline KMnO_{4}, then fractionally distilled from CaH_{2}; (g) Fischer $\mathrm{CH}_{3} \mathrm{CN}$ distilled successively from alkaline $\mathrm{KMnO}_{4}, \mathrm{KHSO}_{4}$, and CuSO_{4}, then fractionally distilled from CaH_{2}; (h) Fischer $\mathrm{CH}_{3} \mathrm{CN}$ distilled successively from alkaline $\mathrm{KMnO}_{4}, \mathrm{KHSO}_{4}, \mathrm{CuSO}_{4}$, and $\mathrm{P}_{4} \mathrm{O}_{10}$; (i) Fischer $\mathrm{CH}_{3} \mathrm{CN}$ distilled from CuSO_{4}, passed through a column of Woelm N-Super I alumina, and fractionally distilled from alumina; (j) Burdick and Jackson "distilled in glass" $\mathrm{CH}_{3} \mathrm{CN}$ distilled from CaH_{2}; and (k) Burdick and Jackson $\mathrm{CH}_{3} \mathrm{CN}$ distilled from CuSO_{4}, passed through a column of alumina, and fractionally distilled from alumina. Solutions ca. 60 mM in $\mathrm{HCo}(\mathrm{CO})_{4}$ (and therefore less susceptible to deprotonation by impurities than the solutions employed in the first set of experiments) showed the following extents of deprotonation in $\mathrm{CH}_{3} \mathrm{CN}$ purified by the various techniques: (d) 16%; (e) 11%; (f) 14%; (g) 11%; (h) 12%; (i) 10%; (j) 10%; and (k) 9%.
$\mathrm{HCo}(\mathrm{CO})_{4}$. An orange-pink solution of $\left[\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CO})_{4}\right]_{2}$ obtained by the dissolution of $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ in $\mathrm{CH}_{3} \mathrm{CN}$ was frozen at -196 ${ }^{\circ} \mathrm{C}$. A limiting amount of HCl was then added $\left(\mathrm{HCl}:\left[\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]-\right.$ $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]_{2} \leq 2.0$). This method assures complete reaction and hence the absence of HCl from the product. The frozen mixture was then allowed to warm to $0^{\circ} \mathrm{C}$ with a concomitant color change from or-ange-pink to royal blue $\left(\mathrm{CoCl}_{2}\right)$. The $\mathrm{HCo}(\mathrm{CO})_{4}$ and $\mathrm{CH}_{3} \mathrm{CN}$ were then removed by vacuum transfer. Solutions $0.001-1.0 \mathrm{M}$ in $\mathrm{HCo}(\mathrm{CO})_{4}$ were obtained by this technique. In general, the concentration of the $\mathrm{HCo}-$ $(\mathrm{CO})_{4}$ solution thus prepared was $6-15 \%$ below theoretical (see below) ${ }^{22}$
$\mathbf{H C o}(\mathbf{C O})_{3} \mathrm{PPh}_{3}$. A modification of the procedure used by Hieber ${ }^{11}$ was employed. Because of the limited thermal stability of the product, all manipulations were performed rapidly at $-78^{\circ} \mathrm{C}$ and, once isolated, the product was used immediately. $\mathrm{NaCo}(\mathrm{CO})_{3} \mathrm{PPh}_{3} \cdot 2 \mathrm{THF}(75 \mathrm{mg}, 0.15$ mmol) was dissolved in THF (6 mL) and the solution frozen at $-196^{\circ} \mathrm{C}$. $\mathrm{CF}_{3} \mathrm{COOH}(0.23 \mathrm{mmol})$ was then added by vacuum transfer and the mixture warmed to room temperature with rapid stirring. The THF was removed in vacuo to afford a yellow waxy residue which was triturated

(14) Treichel, P. M.; Morris, J. H.; Stone, F. G. A. J. Chem. Soc. 1963,

 720.(15) Warner, K. W.; Norton, J. R. Organometallics 1985, 4, 2150.
(16) Gibson, D. H.; Wen-Liang, H.; Steinmetz, A. L.; Johnson, B. R. J. Organomet. Chem. 1981, 208, 89.
(17) Nolan, S. P.; Hoff, C. D.; Landrum, J. T. J. Organomet. Chem. 1985, 282, 357.
(18) Plotkin, J. S.; Shore, S. G. Inorg. Chem. 1981, 20, 284.
(19) Cotton, J. D.: Bruce, M. I.; Stone, F. G. A. J. Chem. Soc. A 1968, 2162.
(20) (a) Fachinetti, G.; Del Cima, F.; Braca, G.; Funaioli, T. J. Organomet. Chem. 1984, 275, C25. (b) Heiber, W., Sedlmeier, J. Chem. Ber. 1954, 87, 25. (c) Wender, J.; Sternberg, H. W.; Orchin, M. J. Am. Chem. Soc. 1952, 74, 1216.
(21) "Recommended Methods for Purification of Solvents"; Coetzee, J. F., Ed.; Pergamon: New York, 1982.
(22) $\mathrm{HCo}(\mathrm{CO})_{4}$ appears to be more stable in $\mathrm{CH}_{3} \mathrm{CN}$ than in noncoordinating solvents, perhaps because the disproportionation of the dimer Co_{2} (CO$)_{8}$ in $\mathrm{CH}_{3} \mathrm{CN}$ keeps the concentration of the monomer $\cdot \mathrm{CO}(\mathrm{CO})_{4}$ (known to be responsible for the autocatalytic decomposition of $\mathrm{HCo}(\mathrm{CO})_{4}$ in nonpolar solvents: Wegman, R. W.; Brown, T. L. J. Am. Chem. Soc. 1980, 102, 2494) very low.

Table I. IR Spectra of Mononuclear Transition-Metal Hydrides and Their Conjugate Bases in Acetonitrile

compound	
$\mathrm{HCo}(\mathrm{CO})_{4}$	$\begin{aligned} & 2117.3(388), 2053.6(1980), \\ & 2023.1(5240) \end{aligned}$
$\left[\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CO})_{4}\right]_{2}$	1892.4 (8160)
$\mathrm{H}_{2} \mathrm{Fe}(\mathrm{CO})_{4}$	2119.3 w, $2050.0 \mathrm{sh}, 2042.8 \mathrm{sh}$, 2034.5 (4300)
[PPN] $\left[\mathrm{HFe}(\mathrm{CO})_{4}\right]$	$\begin{aligned} & 2003.1 \mathrm{w}, 1913.6(2520) \\ & 1881.4(7090) \end{aligned}$
$\left.\mathrm{HCo}^{(\mathrm{CO}}\right)_{3} \mathrm{P}(\mathrm{OPh})_{3}$	2074.8 w, 2021.5 w, 1996.1 (2860)
$\mathrm{NaCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3}$	1960.5 (1480), 1872.0 (5220)
$\mathrm{HMn}(\mathrm{CO})_{5}$	2012.3 (6260)
[HNEt_{3}][Mn(CO) ${ }_{5}$]	1910.4 (3540), 1863.5 (5450)
$\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{PPh}_{3}$	2050 w, 1970.7 (2850)
$\left[\mathrm{HNEt}_{3}\right]\left[\mathrm{Co}(\mathrm{CO})_{3} \mathrm{PPh}_{3}\right]$	1927.2 (991), 1838.4 (3640)
$\mathrm{H}_{2} \mathrm{Ru}(\mathrm{CO})_{4}$	$\begin{aligned} & 2138.9 \mathrm{w}, 2085.3 \mathrm{sh}, 2071.6 \mathrm{sh}, \\ & 2051.0(4420) \end{aligned}$
[TMGH][HRu(CO) ${ }_{4}$]	$\begin{gathered} 2013.0 \mathrm{w}, 1935.3(3009), \\ 1889.5(6480) \end{gathered}$
$\mathrm{Cp}^{*} \mathrm{Mo}(\mathrm{CO})_{3} \mathrm{H}$	2009.3 (2086), 1918.3 (3167)
[TMGH][Cp*Mo(CO) ${ }_{3}$]	1881.1 (1915), 1762.0 (2152)
$\mathrm{CpFe}(\mathrm{CO})_{2} \mathrm{H}$	2013.4 (1430), 1949.2 (1520)
$\mathrm{CpFe}(\mathrm{CO})_{2} \mathrm{~K}$	1862.2 (2230), 1787.1 (2470)
$\mathrm{CpRu}(\mathrm{CO})_{2} \mathrm{H}$	2023.6 (1880), 1958.3 (2230)
$\mathrm{CpRu}(\mathrm{CO})_{2} \mathrm{~K}$	1855.2 (2160), 1800.5 (2320)
$\mathrm{HRe}(\mathrm{CO})_{5}$	2012.3 (7630)
$\mathrm{NaRe}(\mathrm{CO})_{5}$	1917.5 (6420), 1862.4 (9240)
$\mathrm{Cp}{ }^{*} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{H}$	1992.0 (2630), 1929.2 (2810)
$\mathrm{Cp}{ }^{*} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{~K}$	1840.5 (2750), 1768.4 (2710)
$\mathrm{CpW}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right) \mathrm{H}$	1917.5 (2500), 1830.0 (2380)
$\mathrm{CpW}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right) \mathrm{K}$	1762.5 (2120), 1682.4 (1800)

with hexane (5 mL). The hexane was removed in vacuo and the solid residue triturated with toluene (5 mL). The mixture was filtered at -78 ${ }^{\circ} \mathrm{C}$ to remove the $\mathrm{CF}_{3} \mathrm{COONa}$, and the toluene was again removed in vacuo to afford a yellow-cream colored solid which was used immediately.
$\left[\mathrm{HNE}_{3}\right]\left[\mathrm{Co}(\mathrm{CO})_{3} \mathrm{PPh}_{3}\right] . \mathrm{HCo}(\mathrm{CO})_{3} \mathrm{PPh}_{3}(7.5 \mathrm{mg}, 0.019 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(1.2 \mathrm{~mL})$ and the solution frozen at $-196^{\circ} \mathrm{C}$. NEt_{3} (0.035 mmol) was added by vacuum transfer and the mixture warmed to room temperature with stirring. The product was not isolated but generated and used in situ.
$\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3}$. A modification of the procedure used by Hieber ${ }^{11}$ was employed. Because of the very limited thermal stability of the product and its high solubility in hydrocarbon solvents, $\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{P}$ $(\mathrm{OPh})_{3}$ was prepared in situ, $\mathrm{NaCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3} \cdot 2 \mathrm{THF}(7.2 \mathrm{mg}, 0.012$ mmol) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{~mL})$ and the solution frozen at -196 ${ }^{\circ} \mathrm{C}$. $\mathrm{HCl}(0.21 \mathrm{mmol})$ was then added by vacuum transfer and the mixture warmed to $0^{\circ} \mathrm{C}$ with rapid stirring. The solution became cloudy as NaCl precipitated. Removal of solvent in vacuo afforded a white solid $\left(\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3}\right.$ and NaCl$)$.

Acetonitrile Solutions of Hydrides Not Isolated. In many cases hydrides were more stable in dilute acetonitrile solution than when pure. These stable $\mathrm{CH}_{3} \mathrm{CN}$ hydride solutions were obtained by acidification of $\mathrm{CH}_{3} \mathrm{CN}$ solutions of the anion; the $\mathrm{CH}_{3} \mathrm{CN}$ and hydride were then removed from the salt, usually by vacuum transfer. $\mathbf{C p M}(\mathbf{C O})_{2} \mathbf{H}(\mathbf{M}=$ $\mathbf{F e},{ }^{23} \mathbf{R u}$): The potassium anion was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ and acidified with a limiting amount of HCl or $\mathrm{CF}_{3} \mathrm{COOH}$ (i.e., $\mathrm{CpM}(\mathrm{CO})_{2} \mathrm{~K}: \mathrm{HCl}<$ 1). $\mathrm{H}_{2} \mathrm{Fe}(\mathrm{CO})_{4}:[\mathrm{PPN}]\left[\mathrm{HFe}(\mathrm{CO})_{4}\right](53 \mathrm{mg}, 6.4 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(0.42 \mathrm{~mL})$ and treated with a twofold excess of $\mathrm{H}_{2} \mathrm{SO}_{4}(98 \%)$ at $-196^{\circ} \mathrm{C}$. The mixture was warmed to $-25^{\circ} \mathrm{C}$ and stirred for 10 min . $\mathrm{H}_{2} \mathrm{Ru}(\mathrm{CO})_{4}: \mathrm{Na}_{2} \mathrm{Ru}(\mathrm{CO})_{4}{ }^{19}(8.0 \mathrm{mg}, 0.031 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(0.55 \mathrm{~mL})$ and treated with a threefold excess of $\mathrm{H}_{2} \mathrm{SO}_{4}(98 \%)$ at $-196^{\circ} \mathrm{C}$. The mixture was warmed to $-25^{\circ} \mathrm{C}$ and stirred for 10 min . The ${ }^{1} \mathrm{H}$ NMR spectrum ($\delta-7.9$) and IR spectrum (Table I) of the $\mathrm{H}_{2} \mathrm{Ru}(\mathrm{CO})_{4}$ obtained in acetonitrile by vacuum transfer were in acceptable agreement with these reported for $\mathrm{H}_{2} \mathrm{Ru}(\mathrm{CO})_{4}$ in other media. ${ }^{19.24} \mathrm{Cp} * \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{H}: \quad \mathrm{Cp} * \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{~K}(5.4 \mathrm{mg}, 0.018 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(2.3 \mathrm{~mL})$ and the solution frozen at $-196^{\circ} \mathrm{C} . \mathrm{HCl}$ (0.020 mmol) was added by vacuum transfer and the mixture warmed to room temperature with stirring. In this case separation of the $\mathrm{CH}_{3} \mathrm{CN}$ and hydride by vacuum transfer was not feasible, and the solution of the hydride thus generated was used for further work. Removal of the

[^1]$\mathrm{CH}_{3} \mathrm{CN}$ in vacuo, and dissolution of the residue in $\mathrm{C}_{6} \mathrm{D}_{6}$, gave a solution with a ${ }^{1} \mathrm{H}$ NMR spectrum identical with that reported ${ }^{25}$ for $\mathrm{Cp}^{*} \mathrm{Fe}$ $(\mathrm{CO})_{2} \mathrm{H}$.

Behavior of $\mathrm{HCo}(\mathrm{CO})_{4}$ in $\mathrm{CH}_{3} \mathrm{CN}$. A sma.l and variable amount of deprotonation (evidenced by formation of $\mathrm{Co}(\mathrm{CO})_{4}^{-}$) was observed in the IR spectra of freshly prepared $\mathrm{CH}_{3} \mathrm{CN}$ solutions of $\mathrm{HCo}(\mathrm{CO})_{4}$. Typical values for the extent of this deprotonation were $6-22 \%$, depending upon the $\mathrm{HCo}(\mathrm{CO})_{4}$ concentration. The extent of deprotonation was smaller at higher concentrations of $\mathrm{HCo}(\mathrm{CO})_{4}$, suggesting the presence of a small amount of basic impurity in the IR cell or solvent (and not the formation of $\mathrm{Co}(\mathrm{CO})_{4}{ }^{-}$by the decomposition of $\mathrm{HCo}(\mathrm{CO})_{4}$, i.e., $\mathrm{HCO}(\mathrm{CO})_{4} \rightarrow \mathrm{H}_{2}$ $\left.+\left[\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CO})_{4}\right]_{2}\right)$. For this reason, a short path length solution cell ($\mathrm{CaF}_{2}, 0.06 \mathrm{~mm}$) with Teflon spacers was employed, and the concentration of $\mathrm{HCo}(\mathrm{CO})_{4}$ was kept as high as practical during $\mathrm{p} K_{\mathrm{a}}$ measurements.

The total cobalt concentration in these solutions was determined by allowing them to decompose to H_{2} and $\left[\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CO})_{4}\right]_{2}$ and using the known absorptivity of $\mathrm{Co}(\mathrm{CO})_{4}{ }^{-}$. These total cobalt concentrations were typically 6-15\% below theoretical (see above). The $\mathrm{HCo}(\mathrm{CO})_{4}$ concentration was computed by subtracting the initial Co $(\mathrm{CO})_{4}{ }^{-}$corcentration (resulting from deprotonation by small amounts of impurities, as discussed above) from the total cobalt concentration and used to determine the absorptivity of $\mathrm{HCo}(\mathrm{CO})_{4}$

IR Experiments-Absorptivities. Solutions of isolable hydridometal compounds ($\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{PPh}_{3}, \mathrm{HMn}(\mathrm{CO})_{5}, \mathrm{HRe}(\mathrm{CO})_{5}, \mathrm{Cp}^{*} \mathrm{Mo}(\mathrm{CO})_{3} \mathrm{H}$, $\left.\mathrm{CpW}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right) \mathrm{H}\right)$ and anionic salts $\left(\left[\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CO})_{4}\right]_{2}\right.$, $\mathrm{NaCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3}, \mathrm{NaCo}(\mathrm{CO})_{3} \mathrm{PPh}_{3}, \mathrm{CpFe}(\mathrm{CO})_{2} \mathrm{~K}, \mathrm{CpRu}(\mathrm{CO})_{2} \mathrm{~K}$, $\left.\mathrm{NaRe}(\mathrm{CO})_{5},[\mathrm{PPN}] \mathrm{HFe}(\mathrm{CO})_{4}, \mathrm{Cp}^{*} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{~K}, \mathrm{CpW}(\mathrm{CO})_{2} \mathrm{PMe}_{3} \mathrm{~K}\right)$ were prepared by dissolving a known weight of the compound in a known volume of $\mathrm{CH}_{3} \mathrm{CN}$. Solutions of $\left[\mathrm{baseH}^{+}\right]\left[\mathrm{M}^{-}\right]\left(\left[\mathrm{HNEt}_{3}\right][\mathrm{Co}-\right.$ $\left.(\mathrm{CO})_{3} \mathrm{PPh}_{3}\right],\left[\mathrm{HNEt}_{3}\right]\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]$, and $\left.[\mathrm{TMGH}]\left[\mathrm{Mo}(\mathrm{CO})_{3} \mathrm{Cp}^{*}\right]\right)$, in which the base was chosen so as to deprotonate the hydride complex completely, were prepared by addition of a slight excess of the base to a solution containing the hydride in known concentration. In cases where it would have been very difficult to isolate the hydride $\left(\mathrm{HCo}(\mathrm{CO})_{3^{-}}\right.$ $\mathrm{P}(\mathrm{OPh})_{3}, \mathrm{CpFe}(\mathrm{CO})_{2} \mathrm{H}, \mathrm{CpRu}(\mathrm{CO})_{2} \mathrm{H}, \mathrm{H}_{2} \mathrm{Fe}(\mathrm{CO})_{4}, \mathrm{H}_{2} \mathrm{Ru}(\mathrm{CO})_{4}$, $\mathrm{Cp} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{H}$), solutions of known concentrations were prepared by acidification, with an excess of an acid known to protonate the anion completely (see above), of a $\mathrm{CH}_{3} \mathrm{CN}$ solution containing a known concentration of the corresponding metal anion.

The absorptivities of the ν_{co} bands of the metal hydride complexes and their corresponding anions are given in Table I. A $0.099 \mathrm{~mm} \mathrm{CaF}_{2}$ solution cell was used in all cases except for $\mathrm{HCo}(\mathrm{CO})_{4}$ and $\left[\mathrm{Co}\left(\mathrm{CH}_{3}-\right.\right.$ $\left.\mathrm{CN})_{6}\right]\left[\mathrm{Co}(\mathrm{CO})_{4}\right]_{2}$ (for which, as mentioned above, a cell with a path length of 0.06 mm was used). Complete Beer's law plots were done for $\mathrm{HMn}(\mathrm{CO})_{5}$ and $\left[\mathrm{Et}_{3} \mathrm{NH}\right]\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]$. For all other hydride compounds and metal anions, absorptivities were measured at two or three different concentrations.

Equilibrium Constants. As in our previous work, ${ }^{6}$ the $\mathrm{p} K_{\mathrm{a}}$ of the transition-metal hydride complexes (MH) was determined by treating hydride solutions with an appropriate base (B) of known $\mathrm{p} K_{\mathrm{a}}\left(\mathrm{BH}^{+}\right)$, effecting a partial deprotonation and establishing the equilibrium shown in eq 1. In general, the solutions were prepared at room temperature and

$$
\begin{equation*}
\mathrm{MH}+\mathrm{B} \rightleftharpoons \mathrm{M}^{-}+\mathrm{BH}^{+} \quad K_{\mathrm{eq}} \tag{1}
\end{equation*}
$$

transferred by syringe into N_{2}-filled IR cells. Solutions containing $\mathrm{H}_{2} \mathrm{Fe}(\mathrm{CO})_{4}$ were prepared at $-23^{\circ} \mathrm{C}$ and transferred into room temperature IR cells; solutions containing the extremely unstable $\mathrm{HCo}(\mathrm{CO})_{4}$ and $\mathrm{H}_{2} \mathrm{Ru}(\mathrm{CO})_{4}$ were injected into the IR cell immediately after thawing.
$[\mathrm{MH}]$ and $\left[\mathrm{M}^{-}\right]$were determined by IR , and, in cases $\left(\mathrm{Et}_{3} \mathrm{~N}, \mathrm{PhNH}_{2}\right.$ and derivatives, ${ }^{26}$ and TMG ${ }^{27.28}$) where the self-association constant K_{f} (eq 2) was known ${ }^{8 c, 29}$ to be effectively zero, $\left[\mathrm{BH}^{+}\right]$was assumed equal

$$
\begin{equation*}
\mathrm{B}+\mathrm{BH}^{+}=\mathrm{BHB}^{+} \quad K_{\mathrm{f}}=\frac{\left[\mathrm{BHB}^{+}\right]}{\left[\mathrm{B}^{-}\right][\mathrm{BH}]} \tag{2}
\end{equation*}
$$

to $\left[\mathrm{M}^{-}\right]$and $[\mathrm{B}]$ was calculated by subtracting $\left[\mathrm{BH}^{+}\right]$from the total
(25) (a) Lapinte, C.; Astruc, D. J. Chem. Soc., Chem. Commun. 1983, 430. (b) Catheline, D.; Astruc, D. Organometallics 1984, 3, 1094.
(26) The K_{f} values for aniline and p-toluidine are reported as 0 . $^{7,8 c, 29}$ Therefore, the K_{f} values for other substituted anilines are assumed to be negligible.
(27) No K_{f} value for TMG has been reported, although a $\mathrm{p} K_{\mathrm{a}}$ value for TMGH ${ }^{+}$in $\mathrm{CH}_{3} \mathrm{CN}$ has been given. ${ }^{28}$ The only $\mathrm{p} K_{8}$ values in this work arising from the use of TMG (those of $\mathrm{HRe}(\mathrm{CO})_{5}$ and $\mathrm{Cp} * \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{H}$) were calculated on the assumption that the K_{f} was zero then confirmed by the use of other bases $\left(\mathrm{Et}_{3} \mathrm{~N}\right.$ for $\mathrm{HRe}(\mathrm{CO})_{5}$, and KOPh for $\left.\mathrm{Cp} * \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{H}\right)$.
(28) Kolthoff, I. M.; Chantooni, M. K., Jr.; Bhowmik, S. J. Am. Chem. Soc. 1968, 90, 23.
(29) Coetzee, J. F.; Padmanabhan, G. R.; Cunningham, G. P. Talanta 1964, 11, 93.
concentration of base initially added. When $K_{\text {eq }}$ for deprotonation of $\mathrm{HCo}(\mathrm{CO})_{4}$ by $p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$ was determined, [BH^{+}] was calculated by correcting the measured $\left[\mathrm{Co}(\mathrm{CO})_{4}{ }^{-}\right]$for the $\left[\mathrm{Co}(\mathrm{CO})_{4}{ }^{-}\right]$formed in an otherwise identical control experiment without $p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$ (i,e., for anion arising from deprotonation by impurities); $K_{\text {eq }}$ was then calculated from this $\left\{p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{3}{ }^{+}\right.$], the remaining [$p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$], and the measured $\left[\mathrm{HCo}(\mathrm{CO})_{4}\right]$ and $\left[\mathrm{Co}(\mathrm{CO})_{4}{ }^{-}\right]$-a procedure which assures that the impurities are much stronger bases than $p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$, so that $p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{3}{ }^{+}$is the only species present capable of protonating $\mathrm{Co}(\mathrm{CO})_{4}^{-}$.

In cases (all amine bases other than $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{PhNH}_{2}$ and its derivatives, ${ }^{26}$ and $\mathrm{TMG}^{27,28}$) where the known ${ }^{8,29}$ value of K_{f} indicated that eq 2 had to be taken into account, [BH^{+}] was calculated according to eq 3^{30} from $\left[\mathrm{M}^{-}\right]$and the total concentration of base initially added; $\left[\mathrm{BHB}^{+}\right]$

$$
\begin{equation*}
\left[\mathrm{BH}^{+}\right]^{2}+\left\{[\mathrm{B}]_{\text {total }}-2\left[\mathrm{M}^{-}\right]+\frac{1}{K_{\mathrm{f}}}\right\}\left[\mathrm{BH}^{+}\right]-\frac{\left[\mathrm{M}^{-}\right]}{K_{\mathrm{f}}}=0 \tag{3}
\end{equation*}
$$

was then calculated from $\left[\mathrm{M}^{-}\right]$and $\left[\mathrm{BH}^{+}\right]$, and $[\mathrm{B}]$ was calculated from $[B]_{\text {toral }},\left[\mathrm{BHB}^{+}\right]$, and $\left[\mathrm{BH}^{+}\right]$. When, as in the case of $\mathrm{CpRu}(\mathrm{CO})_{2} \mathrm{H}$, the acid-base equilibrium was established by protonation of the metal anion with the hydrochloride of the base, [B] was calculated from [MH] and $[\mathrm{A}]_{\text {total }}$, the total concentration of hydrochloride initially added, according to eq 4.30 When phenolate ion was used as a base, as its association with

$$
\begin{equation*}
[\mathrm{B}]^{2}+\left\{[\mathrm{A}]_{\text {total }}-2[\mathrm{MH}]+\frac{1}{K_{\mathrm{f}}}\right\}[\mathrm{B}]-\frac{[\mathrm{MH}]}{K_{\mathrm{f}}}=0 \tag{4}
\end{equation*}
$$

phenol according to eq 5 was known to be significant, ${ }^{31}$ the cubic expression in eq 6^{32} was used to calculate $[\mathrm{PhOH}]=\left[\mathrm{BH}^{+}\right]$and thence $\left[\mathrm{PhO}^{-}\right]=[\mathrm{B}]$.

$$
\begin{gather*}
\mathrm{PhO}^{-}+2 \mathrm{PhOH} \rightleftharpoons\left[\mathrm{PhO}(\mathrm{PhOH})_{2}\right]^{-} \\
K_{\text {assoc }}=\frac{\left[\mathrm{PhO}(\mathrm{PhOH})_{2}{ }^{-}\right]}{\left[\mathrm{PhO}^{-}\right][\mathrm{PhOH}]^{2}} \tag{5}\\
{[\mathrm{PhOH}]^{3}+\left\{2\left[\mathrm{PhO}^{-}\right]_{\text {total }}-3\left[\mathrm{M}^{-}\right]\left\{[\mathrm{PhOH}]^{2}+\frac{[\mathrm{PhOH}]}{K_{\text {assoc }}}-\frac{\left[\mathrm{M}^{-}\right]}{K_{\text {assoc }}}=0\right.\right.} \tag{6}
\end{gather*}
$$

The resulting values of $\left[\mathrm{M}^{-}\right],[\mathrm{M}],\left[\mathrm{BH}^{+}\right]$, and $[\mathrm{B}]$ were then used to calculate $K_{\text {eq }}$ for eq 1, and the $\mathrm{p} K_{\mathrm{a}}$ of the metal hydride was then calculated according to eq 7 from K_{eq} and the known ${ }^{7.8 \mathrm{c}, 28,31} \mathrm{p} K_{\mathrm{a}}$ of BH^{+}.

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{a}}(\mathrm{MH})=\mathrm{p} K_{\mathrm{a}}\left(\mathrm{BH}^{+}\right)+\mathrm{p} K_{\mathrm{eq}} \tag{7}
\end{equation*}
$$

Determination of the $\mathrm{p} \boldsymbol{K}_{\mathrm{a}}$ in Acetonitrile of the Protonated Form of Substituted Anilines. These values were determined by the potentiometric method of Coetzee and Padmanabhan, ${ }^{8 c}$ using the cell design of Kolthoff and Thomas. ${ }^{33}$ The electrode was calibrated with buffer solutions of picric acid and tetra- n-butylammonium picrate, taking the $\mathrm{p} K_{\mathrm{a}}$ of picric acid as 11.0. ${ }^{34}$ These measurements are described in greater detail in a separate publication. ${ }^{35}$ The $\mathrm{p} K_{\mathrm{a}}$ found for 2,4-dichloroanilinium perchlorate was 8.0 , that for p-cyanoanilinium perchlorate was 7.6 , that for p-anisidinium perchlorate was 11.3, and that for p-(trifluoromethyl)anilinium perchlorate was 8.6 ; the literature values ${ }^{7,8 c .28}$ for anilinium perchlorate and p-toluidinium perchlorate were successfully reproduced as 10.5 and 11.1 , respectively.

NMR Determination of the $\mathrm{p} \mathrm{K}_{\mathrm{a}}$ in $\mathrm{CH}_{3} \mathbf{C N}$ of $\mathrm{HCo}(\mathrm{CO})_{4}$. Four separate solutions of $\left[\mathrm{Co}\left(\mathrm{CD}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CO})_{4}\right]_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$ were prepared by reacting a known amount of $\mathrm{CO}_{2}(\mathrm{CO})_{8}$ with 0.40 mL of $\mathrm{CD}_{3} \mathrm{CN}$. A slight excess of $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added to each of the solutions at $-196^{\circ} \mathrm{C}$, and they were slowly warmed to $0^{\circ} \mathrm{C}$; solvent and hydride were then quickly vacuum transferred into NMR tubes. Each of the four tubes

[^2] tion.
contained an equal and known amount of an internal standard, neopentane; two of the tubes also contained carefully measured amounts of 2,4-dichloroaniline and p-cyanoaniline. After all four tubes were frozen and sealed under vacuum, the ${ }^{1} \mathrm{H}$ NMR spectra of the two tubes that contained no base were used to determine the amount of $\mathrm{HCo}(\mathrm{CO})_{4}$ lost during acidification and vacuum transfer (9% and 11%). The $\mathrm{p} K_{\text {eq }}$ for the deprotonation of $\mathrm{HCO}(\mathrm{CO})_{4}$ by 2,4-dichloroaniline was estimated as 0.54 from the additional decrease in the integrated intensity of the hydride resonance in the tube containing 2,4 -dichloroaniline; substitution of this $\mathrm{p} K_{\text {eq }}$ value into eq 7 gave 8.5 as an estimate for the $\mathrm{p} K_{\mathrm{a}}$ of $\mathrm{HCo}(\mathrm{CO})_{4}$. Similarly, the $\mathrm{p} K_{\text {eq }}$ for the deprotonation of $\mathrm{HCo}(\mathrm{CO})_{4}$ by p-cyanoaniline was estimated as 0.85 from the additional decrease in the integrated intensity of the hydride resonance in the tube containing p cyanoaniline; substitution of this $\mathrm{p} K_{\text {eq }}$ value into eq 7 also gave 8.5 as an estimate for the $\mathrm{p} K_{\mathrm{a}}$ of $\mathrm{HCo}(\mathrm{CO})_{4}$. All spectra were obtained at $-30^{\circ} \mathrm{C}$, where the rate of proton transfer was slow, with 30 -s intervals between pulses in order to ensure accurate integrations. For both 2,4-dichloroaniline and p-cyanoaniline, the extent of deprotonation calculated from the integrated intensity of the hydride resonance was confirmed by the excess of the integrated intensity of the $\mathrm{NH}_{2} / \mathrm{NH}_{3}{ }^{+}$peak over that expected for unprotonated $\mathrm{ArNH} \mathrm{N}_{2}$

The Spectrophotometric Titration of 2,4-Dichloroaniline with HCl in Acetonitrile. A $7.25 \times 10^{-3} \mathrm{M}$ solution of 2,4-dichloroaniline was titrated with a 0.25 M solution of HCl . The equilibrium concentration of $2,4-$ dichloroaniline was monitored at $305 \mathrm{~nm}\left(\epsilon=2050 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$. The equilibrium concentration of the protonated form ($\epsilon=0$ at 305 nm) was calculated from mass balance. The equilibrium concentration of HCl was estimated by subtracting twice the concentration of protonated $2,4-\mathrm{di}-$ chloroaniline from the concentration of HCl initially added, and the log of the product $K_{\mathrm{HCl}} K_{10}$ (where K_{10} is the equilibrium constant for the $\mathrm{Cl}^{-} / \mathrm{HCl}$ homoconjugation equilibrium shown as eq 10 in the Results section below) was then estimated as 6.6 by the use of eq 8 of Kolthoff, Bruckenstein, and Chantooni ${ }^{9}$ along with our value of the $\mathrm{p} K_{\mathrm{a}}$ of 2,4dichloroanilinium ion.

Results

The $\mathrm{p} K_{\mathrm{a}}$ values determined in $\mathrm{CH}_{3} \mathrm{CN}$ for transition-metal hydrides by measurement of $K_{\text {eq }}$ in eq 1 with bases of known strength (amines and potassium phenolate) are given in Table Il. In all cases but $\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3}$ and $\mathrm{HRe}(\mathrm{CO})_{5}$ (see below), no carbonyl-containing species other than the hydride complex and its conjugate anion have been observed in these experiments. In particular, no associated species of the type $\left[\mathrm{L}_{n} \mathrm{MHML}_{n}\right]^{-}$has been seen. As found in our previous work, ${ }^{6}$ the carbonylmetallate anions generally show the IR spectra expected for symmetrical solvent environments.

Anomalous behavior is observed with $\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3}$ and $\mathrm{HRe}(\mathrm{CO})_{5}$. Acetonitrile solutions of $\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3}$ display three ν_{CO} bands, although only two would be expected from the local $C_{3 v}$ symmetry. The ${ }^{1} \mathrm{H}$ NMR spectrum of a $\mathrm{CD}_{3} \mathrm{CN}$ solution of $\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3}$ does not exhibit the characteristic high-field doublet of the hydride ligand resonance split by phosphorus ${ }^{36}$ but rather a broad singlet at $\delta-11.02$. A single resonance is also observed in the ${ }^{31} \mathrm{P}$ spectrum ($\delta 163.9$). Addition of neat $\mathrm{P}(\mathrm{OPh})_{3}$ (1 equiv) to a solution of $\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3}$ results in a single resonance ($\delta 158.5$) upfield from the phosphorus resonance of the hydride complex and downfield from that ($\delta 128.0$) of free P$(\mathrm{OPh})_{3}$. These results suggest that the equilibrium in eq 8 operates rapidly on the ${ }^{31} \mathrm{P}$ NMR time scale in $\mathrm{CH}_{3} \mathrm{CN}$. The "extra" IR $\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3} \stackrel{\mathrm{CH}_{3} \mathrm{CN}}{\rightleftharpoons} \mathrm{HCo}(\mathrm{CO})_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)+\mathrm{P}(\mathrm{OPh})_{3}$
band at $2021.5 \mathrm{~cm}^{-1}$ is plausibly assigned to $\mathrm{HCo}(\mathrm{CO})_{3}-$ $\left(\mathrm{CH}_{3} \mathrm{CN}\right) .{ }^{37}$ Equilibrium studies of eq 8 were not attempted, and the $\mathrm{p} K_{\mathrm{a}}$ value reported for $\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3}$ is therefore that of the $\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3} / \mathrm{HCo}(\mathrm{CO})_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ mixture

[^3]Table II. Thermodynamic Acidity of Transition-Metal Hydrides in Acetonitrile

hydride	base ($\mathrm{p} K_{\mathrm{a}}\left(\mathrm{BH}^{+} \text {), } K_{\mathrm{f}}\right)^{b}$	$K_{\text {eq }}{ }^{\text {c }}$	$\mathrm{p} K_{\mathrm{a}}(\mathrm{MH})^{\text {c }}$
$\mathrm{HCO}(\mathrm{CO})_{4}$	p-(trifluoromethyl)aniline (8.6, ${ }^{d} 0^{e}$)	2.2 (5) (ca. $\left.-20^{\circ} \mathrm{C}\right)^{f}$	8.3 (2) ${ }^{\text {g }}$ h
$\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3}$	anisidine ($11.3,{ }^{\text {d }} 0^{e}$)	$0.96{ }^{\text {i }}$	$11.3^{\text {h.i }}$
$\mathrm{H}_{2} \mathrm{Fe}(\mathrm{CO})_{4}$	aniline ($10.56,0$)	0.16 (2) (ca. $\left.-20^{\circ} \mathrm{C}\right)^{f}$	11.4 (1) ${ }^{h}$
$\mathrm{CpCr}(\mathrm{CO})_{3} \mathrm{H}^{j}$	pyridine ($12.3,3.98$)	0.096 (6)	13.3 (1)
$\mathrm{CpMo}(\mathrm{CO})_{3} \mathrm{H}^{j}$	pyridine ($12.3,3.98$)	0.028 (6) (ca. $\left.0{ }^{\circ} \mathrm{C}\right)^{f}$	13.9 (1)
$\mathrm{HMn}(\mathrm{CO})_{5}$	morpholine (16.6,10)	34.0 (10)	15.1 (1)
$\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{PPh}_{3}$	morpholine (16.6, 10)	13.2 (14)	15.4 (2) ${ }^{h}$
$\mathrm{CpW}(\mathrm{CO})_{3} \mathrm{H}^{j}$	morpholine ($16.6,10$)	2.86 (18)	16.1 (1)
$\mathrm{Cp}{ }^{*} \mathrm{Mo}(\mathrm{CO})_{3} \mathrm{H}^{k}$	morpholine ($16.6,10$)	0.31 (3)	17.1 (1)
$\mathrm{H}_{2} \mathrm{Ru}(\mathrm{CO})_{4}$	morpholine ($16.6,10$)	0.008 (2) (ca. $\left.-20^{\circ} \mathrm{C}\right)^{\prime}$	18.7 (2) ${ }^{h}$
$\mathrm{CpFe}(\mathrm{CO})_{2} \mathrm{H}$	$\mathrm{NEt}_{3}(18.5,0)$	0.119 (12)	19.4 (1)
$\mathrm{CpRu}(\mathrm{CO})_{2} \mathrm{H}$	pyrrolidine (19.6, 32)	0.246 (12)	20.2 (1)
$\mathrm{H}_{2} \mathrm{Os}(\mathrm{CO})_{4}{ }^{\prime}$	$\mathrm{NEt}_{3}(18.5,0)$	0.0048 (5)	20.8 (1)
$\mathrm{HRe}(\mathrm{CO})_{5}$	$\mathrm{NEt}_{3}(18.5,0)$	0.0024 (10)	21.1 (3) ${ }^{n}$
$\mathrm{Cp} * \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{H}^{k}$	potassium phenolate $\left(26.6,6.3 \times 10^{5}\right)^{0}$	$\begin{aligned} & 176 \\ & 2.09(16) \end{aligned}$	$26.3(2)^{p}$
$\mathrm{CpW}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right) \mathrm{H}^{q}$	potassium phenolate $\left(26.6,6.3 \times 10^{5}\right)^{0}$	0.90 (5)	26.6 (2)

${ }^{a}$ As defined in eq $2 .{ }^{b}$ Data taken from ref $7,8 \mathrm{c}$, and 29 unless otherwise noted. ${ }^{c}$ At $25{ }^{\circ} \mathrm{C}$ unless otherwise noted. Values in parentheses are uncertainties in the least significant digit. ${ }^{d}$ Measured by potentiometry as in ref 8 c . ${ }^{\text {e }}$ See footnote 26 . ${ }^{\text {f }}$ The solutions were made up at lower temperatures but injected into room temperature IR cells for the determination of $K_{\text {eq }}$; see text. ${ }^{g}$ Confirmed (see text) by approximate ${ }^{1} \mathrm{H}$ NMR measurements at low temperature of the position of the deprotonation equilibria with $2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NH}_{2}$ and $p-\mathrm{NCC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$. ${ }^{h}$ Estimated from $K_{\text {eq }}$ at lower temperatures and $\mathrm{BH}^{+} \mathrm{p} K_{\mathrm{a}}$ values from $25^{\circ} \mathrm{C}$. ${ }^{i}$ The $\mathrm{p} K_{\mathrm{a}}$ is that of the $\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3} / \mathrm{HCo}(\mathrm{CO})_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ mixture rather than that of pure $\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3}$. Equilibrium studies of phosphite dissociation were not attempted. ${ }^{j}$ Previously reported (ref 6). ${ }^{k} \mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$. ${ }^{\prime} \mathrm{TMG}=$ tetramethylguanidine. ${ }^{m}$ See footnotes 27 and $28 .{ }^{n}$ Average of the values estimated from the $\mathrm{Et}_{3} \mathrm{~N}$ data and from the TMG data. ${ }^{\circ}$ See ref 31 . Note that the second figure in parentheses is $K_{\text {assoc }}$, as defined in eq 5 , rather than K_{f}. ${ }^{p}$ Average of the values calculated from the PhO^{-}data and from the TMG data. ${ }^{q}$ Interconversion of the cis and trans isomers is sufficiently rapid to permit treatment of both as a single species in these experiments; see ref 13 .
rather than that of pure $\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3}$.
Although IR spectra of acetonitrile solutions of $\mathrm{HRe}(\mathrm{CO})_{5}$ and $\mathrm{NaRe}(\mathrm{CO})_{5}$ show no irregularities, addition of base $\left(\mathrm{Et}_{3} \mathrm{~N}\right.$ or TMG) to solutions of $\mathrm{HRe}(\mathrm{CO})_{5}$ results not only in simple deprotonation and formation of $\operatorname{Re}(\mathrm{CO})_{5}^{-}$but also in the formation of other carbonyl-containing species, ${ }^{38}$ presumably polynuclear carbonyl anions. It has been assumed that these polynuclear anions are much less basic than $\operatorname{Re}(\mathrm{CO})_{5}{ }^{-}$(Walker, Pearson, and Ford ${ }^{5}$ have found that polynuclear anions are generally less basic than mononuclear ones) and that their concentration is negligible relative to that of the base, $\mathrm{Et}_{3} \mathrm{~N}$ or TMG, initially added. $K_{\text {eq }}$ for $\mathrm{HRe}(\mathrm{CO})_{s}$ has been estimated from knowledge of $[\mathrm{HRe}(\mathrm{C}-$ $\left.\mathrm{O})_{s}\right]$ and $\left[\operatorname{Re}(\mathrm{CO})_{s}{ }^{-}\right]$(both of which are available from the IR measurements) and of the total concentration of initially added base and from the assumption that $\left[\mathrm{BH}^{+}\right]$is approximately equal to $\left[\operatorname{Re}(\mathrm{CO})_{5}^{-}\right]$.

As $\mathrm{HCo}(\mathrm{CO})_{4}, \mathrm{H}_{2} \mathrm{Ru}(\mathrm{CO})_{4}$, and $\mathrm{H}_{2} \mathrm{Fe}(\mathrm{CO})_{4}$ decompose rapidly at room temperature in solution, the equilibrium constants $K_{\text {eq }}$ for these species have been determined at lower temperatures. When the proton-transfer rate has proved slow enough, IR measurements of [HM] and [M^{-}] have been checked by ${ }^{1} \mathrm{H}$ NMR. For example, the equilibrium constant for deprotonation of $\mathrm{HCo}(\mathrm{CO})_{4}$ has been determined by monitoring the decrease in intensity (vs. an internal standard) of its hydride resonance in the presence of appropriate aniline bases, $2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NH}_{2}$ and p $\mathrm{NCC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$, at low temperatures. The $\mathrm{p} K_{\mathrm{a}}$ values of the protonated forms 2,4- $\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NH}_{3}{ }^{+}$and $p-\mathrm{NCC}_{6} \mathrm{H}_{4} \mathrm{NH}_{3}{ }^{+}$have been determined by potentiometry and the $\mathrm{HCo}(\mathrm{CO})_{4} \mathrm{p} K_{\mathrm{a}}$ values calculated from these numbers agree with the $\mathrm{HCo}(\mathrm{CO})_{4} \mathrm{p} K_{\mathrm{a}}$ calculated from the IR data.

The $\mathrm{p} K_{\mathrm{a}}$ value thereby determined for $\mathrm{HCo}(\mathrm{CO})_{4}$ (8.3) suggested comparison with the several reported values of the $\mathrm{p} K_{\mathrm{a}}$ of HCl in $\mathrm{CH}_{3} \mathrm{CN}\left(8.94,{ }^{9} 8.1,{ }^{39}\right.$ and 6.2^{40}), as we had observed experimentally that HCl completely protonated $\mathrm{Co}(\mathrm{CO})_{4}{ }^{-}$(eq 9). We therefore briefly investigated the acidity of HCl in $\mathrm{CH}_{3} \mathrm{CN}$, by spectrophotometric titration of HCl with 2,4 -dichloroaniline.

[^4]The situation is complicated by the $\mathrm{Cl}^{-} / \mathrm{HCl}$ homoconjugation equilibrium shown in eq 10 , and it is possible to determine only the product $K_{\mathrm{HC}} K_{10}$ from such data alone (using the procedure

$$
\begin{equation*}
\mathrm{HCl}+\mathrm{Co}(\mathrm{CO})_{4}{ }^{-} \rightarrow \mathrm{HCo}(\mathrm{CO})_{4} \tag{9}
\end{equation*}
$$

of Kolthoff, Bruckenstein, and Chantooni ${ }^{9.41}$). The use of a value of K_{10} derived from conductometric data ${ }^{39}$ gave an estimate of the $\mathrm{p} K_{\mathrm{a}}$ of HCl as 8.9.

$$
\begin{equation*}
\mathrm{Cl}^{-}+\mathrm{HCl} \stackrel{K_{10}}{\rightleftharpoons} \mathrm{HCl}_{2}^{-} \tag{10}
\end{equation*}
$$

Solvent purity is very important in obtaining reliable thermodynamic acidity data, especially when dealing with very acidic species. Except for $\mathrm{HCo}(\mathrm{CO})_{4}$, all of the hydrides examined in this study showed no IR evidence for deprotonation when dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ purified by any reasonable method. However, the IR spectrum of freshly prepared solutions of $\mathrm{HCo}(\mathrm{CO})_{4}$ showed some $\mathrm{Co}(\mathrm{CO})_{4}^{-}$; the fraction of $\mathrm{HCo}(\mathrm{CO})_{4}$ deprotonated depended upon the method of acetonitrile purification and decreased at higher concentrations. These results suggested that the deprotonation was due to impurities, either in the solvent or in the IR cell. We therefore carried out two separate sets of experiments, each at constant concentration and in the same IR cell, measuring the extent of deprotonation of $\mathrm{HCo}(\mathrm{CO})_{4}$ in the $\mathrm{CH}_{3} \mathrm{CN}$ resulting from the different purification procedures described in the Experimental Section. The most effective purification procedures were (a) distillation from alkaline KMnO_{4}, followed by distillation from KHSO_{4}, fractional distillation from CaH_{2}, and vacuum transfer from $\mathrm{P}_{4} \mathrm{O}_{10}$ and (k) distillation from CuSO_{4}, passage through a column of highly activated alumina, and distillation from that alumina. In order to minimize the effects of basic impurities in the acetonitrile, high concentrations of hydride complex were employed in the measurement of absorptivity values and equilibrium constants.

Discussion

The thermodynamic acidities tabulated in Table II cover a range of about $20 \mathrm{p} K_{\mathrm{a}}$ units, from the very acidic $\mathrm{HCo}(\mathrm{CO})_{4}$ to the weakly acidic $\mathrm{CpW}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right) \mathrm{H}$. However, in a solvent like acetonitrile relative $\mathrm{p} K_{\mathrm{a}}$ values are more meaningful than absolute

[^5]ones. All of the literature values ${ }^{7,8 c, 28}$ we have employed for the $\mathrm{p} K_{\mathrm{a}}$ of the protonated nitrogen bases and the values we have measured for $p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}, p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$, 2,4$\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NH}_{2}$, and $p-\mathrm{NCC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$ (we have also duplicated the literature values ${ }^{7,8 c, 28}$ for $p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$ and for aniline itself) are based on the well-established $\mathrm{p} K_{\mathrm{a}}$ of picric acid and on the relationship between hydrogen ion activity and glass electrode potential established by Kolthoff and co-workers in the course of their picric acid $\mathrm{p} K_{\mathrm{a}}$ determination. ${ }^{34}$ However, these nitrogen base measurements (our own as well as the ones in the literature ${ }^{8 c .28}$) have required extrapolation of the (H^{+}activity) /(glass electrode response) relation beyond the concentration range in which it was calibrated, ${ }^{8 c}$ and thus these measurements have an uncertainty in their absolute values which exceeds the uncertainty in their relative values. Furthermore, despite the impressive number of separate methods by which Kolthoff and co-workers checked their 1965 value of the picric acid $\mathrm{p} K_{\mathrm{a}}$ in $\mathrm{CH}_{3} \mathrm{CN},{ }^{34}$ the number of different values previously reported suggests that some uncertainty remains in the present value and therefore that some uncertainty remains in the absolute values of the derived nitrogen base and metal hydride $\mathrm{p} K_{\mathrm{a}}$'s. The uncertainties in our relative $\mathrm{p} K_{\mathrm{a}}$ values (because they are all derived from this same picric acid standard) are obviously smaller, and only these are shown in Table II.

Additional uncertainty as to the significance of the absolute $\mathrm{p} K_{\mathrm{a}}$ values in acetonitrile arises from the direct or indirect dependence of much equilibrium constant data in that solvent upon spectrophotometrically measured equilibrium constants for the protonation of indicator bases with perchloric acid. ${ }^{9}$ Evaluation of the latter rests upon the assumption, strongly supported by the success of the spectrophotometric data treatment ${ }^{9}$ as well as by other evidence, ${ }^{42}$ that HClO_{4} is completely dissociated in $\mathrm{CH}_{3} \mathrm{CN}$-although occasional statements to the contrary can be found in the literature. ${ }^{43}$ Fundamentally, it is difficult to establish the activity coefficient of hydrogen ions in a solvent where (because there is at most one strong acid, perchloric) the concentration of hydrogen ions is not unambiguously known from stoichiometric considerations.

It is obvious that some of the transition-metal hydrides in Table II (e.g., $\mathrm{HCo}(\mathrm{CO})_{4}$) are quite acidic, although it is misleading to compare them quantitatively to literature values for the $\mathrm{p} K_{\mathrm{a}}$ of mineral acids in $\mathrm{CH}_{3} \mathrm{CN}$ because the latter (or, more precisely, all spectrophotometric measurements of the latter) were determined ${ }^{9}$ by methods which involved the use of an old value of the picric acid $\mathrm{p} K_{\mathrm{a}} \cdot{ }^{34}$ For HCl , as mentioned above, the literature contains three values: 6.2 from work which is internally inconsistent on the question of whether or not HClO_{4} is completely dissociated, ${ }^{40,43} 8.1$ from the analysis of Kolthoff and co-workers of conductometric data measured by others, ${ }^{39}$ and 8.94 from work by Kolthoff and co-workers which depends upon an obsolete value of the picric acid $\mathrm{p} K_{\mathrm{a}} .{ }^{9}$ There is no obvious problem with the conductometric result, and, if one assumes that the value of K_{10} extracted by Kolthoff from the conductometric data ${ }^{9,39}$ is correct, the value of the product $K_{10} K_{\mathrm{HCl}}$ reported by Kolthoff and approximately redetermined in this work gives a $\mathrm{p} K_{\mathrm{a}}$ for HCl of 8.9 -all of which implies a $\mathrm{p} K_{\mathrm{a}}$ for HCl somewhere between 8 and 9 . In any case the combination of complexation by Cl^{-}with HCl (eq 10) and by Cl^{-}with Co^{2+} easily explains why the equilibrium in reaction 9 lies to the right, and it seems reasonable to conclude that the acid strengths of $\mathrm{HCo}(\mathrm{CO})_{4}$ and HCl in acetonitrile are about equal.

These results make the advantages of the weakly basic acetonitrile as a solvent for strong acids quite evident. $\mathrm{HCo}(\mathrm{CO})_{4},{ }^{2 a}$ $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HNO}_{3}, \mathrm{HClO}_{4}$, and $\mathrm{H}_{2} \mathrm{SO}_{4}$ are, because of the solvent "levelling effect", indistinguishably strong in water but

[^6]have appreciably different $\mathrm{p} K_{\mathrm{a}}$ values in acetonitrile. If one assumes that the literature ${ }^{9} \mathrm{p} K_{\mathrm{a}}$ values for mineral acids are at least relatively accurate, one can see that $\mathrm{HCo}(\mathrm{CO})_{4}$ is a much weaker acid than perchloric, a somewhat weaker acid than HI , HBr , and $\mathrm{H}_{2} \mathrm{SO}_{4}$, and comparable in acid strength to HCl and $\mathrm{HNO}_{3} . \mathrm{HCo}(\mathrm{CO})_{4}$ is nevertheless an appreciably stronger acid than $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}\left(\mathrm{p} K_{\mathrm{a}}=10.0\right)^{26}$ and 2,4,6-trinitrophenol ($\mathrm{p} K_{\mathrm{a}}=$ $11.0)^{34}$ and definitely stronger than all other transition-metal hydrides we have examined.

All of the transition-metal hydrides in Table II show significant acid strength. The $\mathrm{p} K_{\mathrm{a}}$ of $\mathrm{Cp}^{*} \mathrm{Mo}(\mathrm{CO})_{3} \mathrm{H}$ compares with that of o-hydroxybenzoic acid $\left(\mathrm{p} K_{\mathrm{a}}=16.7\right),{ }^{44}$ and the $\mathrm{p} K_{\mathrm{a}}$'s of the least acidic hydride complexes studied, $\mathrm{Cp} * \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{H}$ and CpW $(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right) \mathrm{H}$, are comparable to that of phenol $\left(\mathrm{p} K_{\mathrm{a}}=26.6\right) .{ }^{31}$ It is worth noting that, because phenolate ion is the strongest base stable in acetonitrile solution, ${ }^{31}$ the methods described in this paper will not be directly applicable to the measurement of the $\mathrm{p} K_{\mathrm{a}}$ of transition-metal hydrides significantly less acidic than CpW $(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right) \mathrm{H}$.

A number of periodic trends are evident from the data in Table II. As we have previously reported for Cr, Mo, and W^{6} acidity generally decreases down a column. For example, moving from iron $\left(\mathrm{H}_{2} \mathrm{Fe}(\mathrm{CO})_{4}\right)$ to ruthenium $\left(\mathrm{H}_{2} \mathrm{Ru}(\mathrm{CO})_{4}\right)$ results in a decrease in acidity of $7.3 \mathrm{p} K_{\mathrm{a}}$ units, and moving from ruthenium to osmium $\left(\mathrm{H}_{2} \mathrm{Os}(\mathrm{CO})_{4}\right)^{6}$ results in a further decrease of $2.1 \mathrm{p} K_{\mathrm{a}}$ units. Likewise, moving from manganese ($\mathrm{HMn}(\mathrm{CO})_{5}$) to rhenium $\left(\mathrm{HRe}(\mathrm{CO})_{5}\right)$ results in a decrease of $6.0 \mathrm{p} K_{\mathrm{a}}$ units. Exceptions to this generalization include $\mathrm{HM}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{4}{ }^{+}(\mathrm{M}=\mathrm{Ni}, \mathrm{Pd}$, and $\mathrm{Pt})^{5 \mathrm{~d}}$ and perhaps $\mathrm{HM}(\mathrm{CO})_{4}\left(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}\right.$, and $\left.\mathrm{Ir}^{45.46}\right)$.

It appears that acidity generally increases from left to right across a transition series $\left(\mathrm{HMn}(\mathrm{CO})_{5} \rightarrow \mathrm{H}_{2} \mathrm{Fe}(\mathrm{CO})_{4} \rightarrow \mathrm{HCO}-\right.$ $\left.(\mathrm{CO})_{4}\right)$. This increase appears to be much greater for the first-row transition series than for the third-row, as evidenced by the negligible difference between $\mathrm{HRe}(\mathrm{CO})_{5}$ and $\mathrm{H}_{2} \mathrm{Os}(\mathrm{CO})_{4}(0.3$ $\mathrm{p} K_{\mathrm{a}}$ units). The $\mathrm{p} K_{\mathrm{a}}$ values of the six-coordinate $\mathrm{CpFe}(\mathrm{CO})_{2} \mathrm{H}$ and $\mathrm{CpRu}(\mathrm{CO})_{2} \mathrm{H}$ are much greater (19.4 and 20.2, respectively) than the $\mathrm{p} K_{\mathrm{a}}$ values of the seven-coordinate $\mathrm{CpM}(\mathrm{CO})_{3} \mathrm{H}(\mathrm{M}=$ $\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}),{ }^{6}$ for reasons explained by Bursten and Gatter. ${ }^{47}$

Table II also offers considerable information on substituent effects. The $\mathrm{p} K_{\mathrm{a}}$'s of $\mathrm{CpMo}(\mathrm{CO})_{3} \mathrm{H}$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{3} \mathrm{H}$ confirm a recent prediction, ${ }^{17}$ based on qualitative observations in THF, that the $\mathrm{p} K_{\mathrm{a}}$ of the $\mathrm{C}_{5} \mathrm{Me}_{5}$ compound would exceed that of the C p compound by at least 3.0 units (the measured $\Delta \mathrm{p} K_{\mathrm{a}}$ is 3.2). In another system $\left(\mathrm{CpFe}(\mathrm{CO})_{2} \mathrm{H}-\mathrm{Cp} * \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{H}\right)$, this difference in acidity is much more pronounced ($6.9 \mathrm{pK} \mathrm{a}_{\mathrm{a}}$ units). Substitution of a triphenyl phosphite ligand for CO in $\mathrm{HCO}(\mathrm{CO})_{4}$ results in a decrease in acidity of $3 \mathrm{p} K_{\mathrm{a}}$ units, whereas substitution by triphenylphosphine decreases the acidity by $7 \mathrm{p} K_{\mathrm{a}}$ unitssupporting the traditional belief that net electron-withdrawing ability increases in the order $\mathrm{PR}_{3}<\mathrm{P}(\mathrm{OR})_{3}<\mathrm{CO}$. Replacement of a CO ligand by trimethylphosphine in $\mathrm{CpW}(\mathrm{CO})_{3} \mathrm{H}$ not surprisingly results in a much larger decrease in acidity ($\Delta \mathrm{p} K_{\mathrm{a}}=10.5$) than the substitution of $\mathrm{Ph}_{3} \mathrm{P}$ on $\mathrm{HCo}(\mathrm{CO})_{4}$.

In the comparatively few cases where accurate $\mathrm{p} K_{\mathrm{a}}$ values have been measured in other solvents, the reported trends are reproduced in $\mathrm{CH}_{3} \mathrm{CN}$. For example, the reported $\mathrm{p} K_{\mathrm{a}}$ values for $\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3}(4.95)$ and $\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{PPh}_{3}(6.96)$ in water ${ }^{2 \mathrm{~d}}$ and the observation that $\mathrm{HCo}(\mathrm{CO})_{4}$ itself is completely dissociated in water ${ }^{2 \mathrm{a}}$ agree with the order of $\mathrm{p} K_{\mathrm{a}}$ values for $\mathrm{HCo}(\mathrm{CO})_{4}$, $\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3}$, and $\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{PPh}_{3}$ in Table II. Similarly, the reported aqueous $\mathrm{p} K_{\mathrm{a}}$ of $\mathrm{HMn}(\mathrm{CO})_{5}(7.1)^{2 \mathrm{~b}}$ is near that of $\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{PPh}_{3}$, and the reported aqueous $\mathrm{pK} \mathrm{a}_{\mathrm{a}}$ of $\mathrm{H}_{2} \mathrm{Fe}(\mathrm{CO})_{4}$ $(4.00)^{2 \mathrm{c}}$ is near that of $\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3}$; both trends are reproduced in the Table II $\mathrm{CH}_{3} \mathrm{CN}$ data. In general, the $\mathrm{p} K_{\mathrm{a}}$ values

[^7]measured for hydride complexes in acetonitrile are ca. $7.5 \mathrm{p} K_{\mathrm{a}}$ units higher than those measured in $\mathrm{H}_{2} \mathrm{O}$.

The acidity of $\mathrm{CpCr}(\mathrm{CO})_{3} \mathrm{H}$ in MeOH ($\mathrm{p} K_{\mathrm{a}}=6.4$, by extrapolation from measurements in 70:30 $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$) has been found to be greater than that of $\mathrm{H}_{2} \mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{p} K_{\mathrm{a}}=6.8\right)$, ${ }^{5 \mathrm{c}, \mathrm{d}}$ a reversal of the acidity order obtained in acetonitrile. In general, the $\mathrm{p} K_{\mathrm{a}}$ values measured for hydride complexes in acetonitrile are ca. $6.7 \mathrm{p} K_{\mathrm{a}}$ units greater than those measured in MeOH .

Lastly, these acetonitrile acidity measurements agree with the small amount of reported gas-phase data. Stevens and Beauchamp, using ion cyclotron resonance spectroscopy, ${ }^{48}$ have reported that $\mathrm{HCo}(\mathrm{CO})_{4}$ is far more acidic than either $\mathrm{H}_{2} \mathrm{Fe}(\mathrm{CO})_{4}$ or $\mathrm{HMn}(\mathrm{CO})_{5}$ (it is not clear which of the latter two compounds is the more acidic). Recent theoretical work calculates a larger total protonation energy, ${ }^{49}$ and a smaller LUMO/HOMO energy difference, ${ }^{50}$ for $\mathrm{Mn}(\mathrm{CO})_{5}{ }^{-}$than for $\mathrm{Co}(\mathrm{CO})_{4}{ }^{-}$. Modified ex-tended-Hückel theory calculates that ΔH for gas-phase proton transfer onto $\mathrm{H}_{2} \mathrm{O}$ increases in the order $\mathrm{HCo}(\mathrm{CO})_{4}<\mathrm{H}_{2} \mathrm{Fe}(\mathrm{CO})_{4}$

[^8]$<\mathrm{HMn}(\mathrm{CO})_{5},{ }^{51}$ in agreement with the order of acidities in $\mathrm{CH}_{3} \mathrm{CN}$ in Table II. It seems likely that differential solvation effects have little effect on the acidity of transition-metal hydride in solution.

Acknowledgment. This research was supported by NSF Grant CHE82-07597. The authors are grateful to Dr. Michael Wright for a gift of $\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}$ and to Robert Hembre for a gift of $\mathrm{Na}_{2} \mathrm{Ru}(\mathrm{CO})_{4}$, to Dr. R. Wegman for advice on the preparation of $\mathrm{HCo}(\mathrm{CO})_{4}$, to Prof. R. G. Pearson for a preprint of ref 5 d , and to Prof. J. F. Coetzee and Prof. J. I. Brauman for helpful discussions on $\mathrm{CH}_{3} \mathrm{CN}$ purification and acidity in nonaqueous solvents.

Registry No. $\mathrm{HCo}(\mathrm{CO})_{4}, 16842-03-8 ; \mathrm{HCo}\left(\mathrm{CO}_{3} \mathrm{P}(\mathrm{OPh})_{3}\right.$, $57574-$ $46-6 ; \mathrm{H}_{2} \mathrm{Fe}(\mathrm{CO})_{4}, 12002-28-7 ; \mathrm{CpCr}^{2}(\mathrm{CO})_{3} \mathrm{H}, 36495-37-1 ; \mathrm{CpMo}-$ $(\mathrm{CO})_{3} \mathrm{H}, 12176-06-6 ; \mathrm{HMn}(\mathrm{CO})_{5}, 16972-33-1 ; \mathrm{HCo}(\mathrm{CO})_{3} \mathrm{PPh}_{3}$, 19537-79-2; $\mathrm{CpW}(\mathrm{CO})_{3} \mathrm{H}, 12128-26-6 ; \mathrm{Cp}^{*} \mathrm{Mo}(\mathrm{CO})_{3} \mathrm{H}, 78003-92-6 ;$ $\mathrm{H}_{2} \mathrm{Ru}(\mathrm{CO})_{4}, 42781-58-8 ; \mathrm{CpFe}(\mathrm{CO})_{2} \mathrm{H}, 35913-82-7 ; \mathrm{CpRu}(\mathrm{CO})_{2} \mathrm{H}$, $57349-59-4 ; \mathrm{H}_{2} \mathrm{Os}(\mathrm{CO})_{4}, 22372-70-9 ; \mathrm{HRe}(\mathrm{CO})_{5}, 16457-30-0 ; \mathrm{Cp}^{*} \mathrm{Fe}-$ $(\mathrm{CO})_{2} \mathrm{H}, 80409-91-2 ; \mathrm{CpW}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right) \mathrm{H}, 31811-36-6$.
(51) McKinney, R. J.; Pensak, D. A. Inorg. Chem. 1979, 18, 3413.

Picosecond Spectroscopic Studies of ($\mathrm{d}^{8}-\mathrm{d}^{8}$) Binuclear Rhodium and Iridium Complexes: A Comparison of ${ }^{1} \mathbf{B}_{2}$ and ${ }^{3} \mathrm{~B}_{2}$ Reactivity in Bis(1,5 -cyclooctadiene)bis(μ-pyrazolyl)diiridium(I)

Jay R. Winkler, ${ }^{\dagger}$ Janet L. Marshall, ${ }^{\ddagger}$ Thomas L. Netzel, ${ }^{\boldsymbol{*} \S}{ }^{\ell}$ and Harry B. Gray ${ }^{*}{ }^{\ddagger}$
Contribution from the Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, and Contribution No. 7318 from the Arthur Amos Noyes Laboratory, California Institute of Technology, Pasadena, California 91125. Received July 1, 1985

Abstract

Picosecond transient kinetics and difference spectra have been recorded for the singlet and triplet ($\mathrm{d} \sigma^{*} \mathrm{p} \sigma$) excited states in the $\mathrm{d}^{8}-\mathrm{d}^{8}$ dimers $\mathrm{Rh}_{2}(\mathrm{TMB})_{4}{ }^{2+}$ (TMB $=2,5$-dimethyl- 2,5 -diisocyanohexane) and $[\operatorname{Ir}(\mu-\mathrm{pz})(\mathrm{COD})]_{2}$ (pz $=$ pyrazolyl, $\mathrm{COD}=1,5$-cyclooctadiene). The singlet excited state in the rhodium dimer ($\tau=820 \mathrm{ps}$) displays a strong transient absorption feature maximizing at 440 nm that is not present in the spectrum of the triplet excited state. This intense absorption feature, characteristic of a ${ }^{1}\left(\mathrm{~d} \sigma^{*} \mathrm{p} \sigma\right)$ electronic configuration, is assigned to a ${ }^{1}\left(\mathrm{~d} \sigma^{*} \mathrm{p} \sigma\right) \rightarrow^{1}\left(\mathrm{p} \sigma^{2}\right)$ excitation. The singlet excited state lifetime of the iridium dimer in cyclohexane is less than 20 ps . Though the solvent 1,2 -dichloroethane (DCE) quenches luminescence from both singlet and triplet excited states in $[\operatorname{Ir}(\mu-\mathrm{pz})(\mathrm{COD})]_{2}$ and oxidatively adds to the dimer upon steady-state illumination, picosecond spectroscopy finds no evidence for any chemical reactivity of the very short-lived singlet excited state. The quenching of $[\operatorname{lr}(\mu-\mathrm{pz})(\mathrm{COD})]_{2}$ singlet luminescence in DCE appears to result from enhanced singlet \rightarrow triplet intersystem crossing in DCE relative to that in cyclohexane. Also, the invariance of triplet yield in these two solvents indicates that the efficiency of intersystem crossing is near unity.

Considerable spectroscopic work on $\mathrm{d}^{8}-\mathrm{d}^{8}$ binuclear complexes of rhodium, iridium, and platinum has shown that the lowest energy singlet and triplet excited states can be described by a $\mathrm{d} \sigma^{*} \mathrm{p} \sigma$ electronic configuration. ${ }^{1}$ This configuration leads to ${ }^{1,3} \mathrm{~A}_{2 u}$ excited states in tetragonal (local $D_{4 h}$ symmetry) complexes such as $\mathrm{Rh}_{2}(\mathrm{TMB})_{4}{ }^{2+}$ (TMB $=2,5$-dimethyl-2,5-diisocyanohexane) and to ${ }^{1,3} \mathbf{B}_{2}$ states in the lower symmetry (local $C_{2 v}$) "A-frame" complexes exemplified by $[\operatorname{Ir}(\mu-\mathrm{pz})(\mathrm{COD})]_{2}\left(\mathrm{Ir}_{2}\right)(\mathrm{pz}=$ pyrazolyl, $\mathrm{COD}=1,5$-cyclooctadiene). Luminescence from both singlet and triplet excited states has been reported for these complexes, as well as for a number of related molecules. The Ir_{2} complex has

[^9]adjacent vacant coordination sites at the metal centers that afford the opportunity for multielectron redox reactions. Recently, Caspar and Gray have reported net photochemical, two-electron reduction of substrates whose initial, one-electron-transfer products are unstable. ${ }^{2}$ Prior studies have shown that $\mathrm{d}^{8}-\mathrm{d}^{8}$ species with both $D_{4 h}$ and $C_{2 c}$ symmetries are powerful one-electron photoreductants. ${ }^{1 d, 3}$ In all the above studies, the long-lived (hundreds

[^10]
[^0]: (1) Schunn, R. A. In "Transition Metal Hydrides"; Muetterties, E. L., Ed.; Marcel Dekker: New York, 1971; Chapter 5
 (2) (a) $\mathrm{HCO}(\mathrm{CO})_{4}$ is a "strong acid" in $\mathrm{H}_{2} \mathrm{O}$: Hieber, W.; Hubel, W. Z Elektrochem. 1953, 57, 235. (b) $\mathrm{HMn}(\mathrm{CO})_{5}, \mathrm{pK}_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{O}\right)=7.1$: Hieber, W. Wagner, G. Z. Naturforsch. 1958, 13b, 339. (c) $\mathrm{H}_{2} \mathrm{Fe}(\mathrm{CO})_{4}, \mathrm{p} K_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)=$ 4.0: Galembeck, P.; Krumholz, P. J. Am. Chem. Soc. 1971, 93, 1909. (d) $\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3}, \mathrm{p} K_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)=4.95$, and $\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{PPh}_{3}, \mathrm{p} K_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{O}\right)=$ 6.96: Hieber, W.: Lindner, E. Chem. Ber. 1961, 94, 1417. (e) $\mathrm{HV}(\mathrm{CO})_{5} \mathrm{PPh}_{3}$ $\mathrm{p} K_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{O}\right)=6.8:$ Hieber, W.; Winter, E.; Schubert, E. Chem. Ber. 1962, 95 3070.

[^1]: (23) Fergusson, S. B.; Sanderson, L. J; Shackleton. T. A.; Baird, M. C Inorg. Chim. Acta 1984, 83, L45.
 (24) Whyman, R. J. Organomet. Chem. 1973, 56, 339.

[^2]: (30) $[\mathrm{B}]($ total $)=[\mathrm{B}]+\left[\mathrm{BH}^{+}\right]+2\left[\mathrm{BHB}^{+}\right]$, and, if we start with HM and B only, $\left[\mathrm{M}^{-}\right]=\left[\mathrm{BH}^{+}\right]+\left[\mathrm{BHB}^{+}\right]$; if we substitute $\left[\mathrm{BHB}^{+}\right]=K_{\mathrm{f}}[\mathrm{B}]\left[\mathrm{BH}^{+}\right]$ from eq 2 , solve both equations for B, and set the resulting expressions equal to each other, we obtain eq 3. If we start with M^{-}and $\mathrm{BH}^{+}(=\mathrm{A})$ only, then $[\mathrm{MH}]=[\mathrm{B}]+\left[\mathrm{BHB}^{+}\right]$, while $[\mathrm{A}]($ total $)=[\mathrm{B}]+\left[\mathrm{BH}^{+}\right]+2\left[\mathrm{BHB}^{+}\right]$; if we substitute $\left[\mathrm{BHB}^{+}\right]=K_{f}[\mathrm{~B}]\left[\mathrm{BH}^{+}\right]$, solve both equations for B , and set the resulting expressions equal to each other, we obtain eq 4.
 (31) Coetzee, J. F.; Padmanabhan, G. R. J. Phys. Chem. 1965, 69, 3193.
 (32) $\left[\mathrm{PhO}^{-}\right]($total $)=\left[\mathrm{PhO}^{-}\right]+[\mathrm{PhOH}]+3\left[\mathrm{PhO}(\mathrm{PhOH})_{2}^{-}\right]$, and, if we start from MH and PhO^{-}only, $\left[\mathrm{PhO}^{-}\right]($total $)=\left[\mathrm{M}^{-}\right]+\left[\mathrm{PhO}^{-}\right]+[\mathrm{PhO}-$ $\left.(\mathrm{PhOH})_{2}^{-}\right]$. If we substitute $\left[\mathrm{PhO}(\mathrm{PhOH})_{2}{ }^{-}\right]=K($ assoc $)[\mathrm{PhOH}]^{2}\left[\mathrm{PhO}^{-}\right]$ from eq 5 , solve both equations for [PhO^{-}], and set the resulting expressions equal to each other, we obtain eq 6.
 (33) Kolthoff, I. M.; Thomas, F. G. J. Phys. Chem. 1965, 69, 3049.
 (34) Kolthoff, I. M.; Chantooni, M. K., Jr. J. Am. Chem. Soc. 1965, 87, 4428. This paper contains numerous references to previous incorrect measurements of the $\mathrm{p} K_{\mathrm{a}}$ of picric acid in acetonitrile.
 (35) Edidin, R. T.; Sullivan, J. M.; Norton, J. R., submitted for publica-

[^3]: (36) A toluene- d_{8} solution of $\mathrm{HCo}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OPh})_{3}$ does display a doublet $\left({ }^{2} J_{\mathrm{PH}}=19.6 \mathrm{~Hz}\right)$ at $\delta-7.23$ in the ${ }^{1} \mathrm{H}$ NMR spectrum. For ${ }^{1} \mathrm{H}$ NMR data of other phosphite complexes of this type see ref 2d. Kinetic data have been reported which suggest that the isoelectronic $\mathrm{HFe}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OMe})_{3}{ }^{-}$undergoes similar reversible phosphite dissociation (although the P-H coupling constant remains observable in THF): Kao, S. C.; Spillett, C. T.; Ash, C.; Lusk, R.; Park, Y. K.; Darensbourg, M. Y. Organometallics 1985, 4, 83.
 (37) For a discussion of $\mathrm{HCo}(\mathrm{CO})_{3}$ see: (a) Sweany, R. L. J. Am. Chem. Soc. 1982, 104, 3739; (b) Warner, P.; Ault, B. S.; Orchin, M. J. Organomet. Chem. 1978, 162, 189.

[^4]: (38) In addition to carbonyl bands for $\mathrm{HRe}(\mathrm{CO})_{s}$ and $\mathrm{Re}(\mathrm{CO})_{5}{ }^{-}$, bands at 1988.7 (sh) and $1970.4(\mathrm{~s}) \mathrm{cm}^{-1}$ were also observed. These additional bands accounted for 50% of the total area in the carbonyl region.
 (39) Janz, G. J.; Danyluk, S. J. Am. Chem. Soc. 1959, 81, 3854. Reference 9 gives values of K_{HCl} and K_{10} based on the data herein and a description of the procedure used to extract them
 (40) Desbarres, J. Bull. Chim. Fr. 1962, 2103.

[^5]: (41) The equilibrium value of $[\mathrm{HCl}]$ was estimated as $[\mathrm{HCl}]($ (total initially added) $-\left[\mathrm{BH}^{+}\right]$.

[^6]: (42) Coetzee, J. F.; Kolthoff, I. M. J. Am. Chem. Soc. 1957, 79, 6110. (43) In tabulating this work in his review, ${ }^{7}$ Coetzee listed the $\mathrm{p} K_{\mathrm{a}}$ of HClO_{4} as " <2 ". Desbarres ${ }^{40}$ began with the assumption that perchloric acid was completely dissociated but listed the pH of half-deprotonation as pH 1.9-a result which has recently (Hillery, P. S.; Cohen, L. A. J. Am. Chem. Soc 1983, 105, 2760) been cited as the basis for a statement that the $\mathrm{p} K_{\mathrm{a}}$ of HClO_{4} in $\mathrm{CH}_{3} \mathrm{CN}$ is 6.7 (a statement for which no justification is apparent).

[^7]: (44) Kolthoff, I. M.; Chantooni, M. K., Jr. J. Phys. Chem. 1966, 70, 856.
 (45) Vidal, J. L.; Walker. W. E. Inorg. Chem. 1981, 20, 249.
 (46) (a) Imyanitov, N. S.; Rudkovskii, D. M. J. Appl. Chem. USSR 1967, 40, 1948; Kinet. Catal. 1967, 8, 1051. (b) Imjanitow, N. S. Hung. J. Ind. Chem. 1975, 3, 331. We thank Dr. Leonard Kaplan for bringing these references to our attention.
 (47) Bursten, B. E.; Gatter, M. G. J. Am. Chem. Soc. 1984, 106, 2554; Organometallics 1984, 3, 941 .

[^8]: (48) Stevens, A. E.; Beauchamp, J. L., private communication.
 49) Ziegler, T. Organometallics 1985, 4, 675.
 (50) Bursten, B. E.; Gatter, M. G. Organometallics 1984, 3, 895.

[^9]: ${ }^{4}$ Brookhaven National Laboratory.
 ${ }^{\text {t }}$ California Institute of Technology.
 ${ }^{\$}$ Present address: Amoco Corp., Amoco Research Center, Naperville, IL 60566.

[^10]: (1) (a) Rice, S. F.; Gray, H. B. J. Am. Chem. Soc. 1981, 103, 1593-1595. (b) Dallinger, R. F.; Miskowski, V. M.; Gray, H. B.; Woodruff, W. H. J. Am. Chem. Soc. 1981, 103, 1595-1596. (c) Rice, S. F.; Gray, H. B. J. Am. Chem. Soc. 1983, 105, 4571-4575. (d) Marshall, J. L.; Stobart, S. R.; Gray, H. B. J. Am. Chem. Soc. 1984, 106, 3027-3029. (e) Che, C.-M.; Atherton, S. J.; Butler, L. G.; Gray, H. B. J. Am. Chem. Soc. 1984, 106, 5143-5145.
 (2) Caspar, J. V.; Gray, H. B. J. Amt. Chem. Soc. 1984, 106, 3029-3030.
 (3) Milder, S. J.; Goldbeck, R. A.; Kliger, D. S.; Gray, H. B. J. Am. Chem. Soc. 1980, 102, 6761-6764.

